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Abstract

Current planning for the Near Iarth Asteroid Rendezvous (NINAR) mission includes an orbital
phase about an asteroid. The current mission design stipulates Fros as the target asteroid. For science
purposcs it is desired to orbit the asteroid as closely and as safely as possible for anextended period of
time (1004 days). However, due to the extremely distorted shape of Eros (=40 X 14 X 14 km), satellite
orbits are significantly non-K eplerian and include, among others, crashing, escaping and stable orbits, all
starting with local circular velocity and zero eccentricity.

This example introduces the problems associated with modeling orbiters about small bodies which
are significantly non-spheroid. 1" or pre-mission planning purposes it is desired to derive qualit ativel y
accurate scenarios Of the orbital phase when the only available information pertaining to such bodies may
be their major dimensions, rotation rate and rotation pole.

We propose to model these bodies as constant density, uniformly rotating tri-axial €ellipsoids. The
potential field of such a body and its gradients may be computedusing the classical result of Ivory’s
theorem. Given this system, it is possible to discuss a variety of interesting classes of orbits about the
body. First general results on synchronous, circular orbits about a rotating ellipsoid are discussed. Then,
for a few specific asteroid models, families of planarand out-of-plane periodic orbits are computed. Finally,
possible simplifications to the general dynamical system arc investigated by describing the tri-axial
ellipsoid in terms of a J2 parameter. This provides simplc analytic expressions for the secular variation of a
satellite’s orbital elements. It is noted that these secular variations canbe quite large, leading to satellite
motion which is significantly non-Keplerian.

We belicve that the study of satellite motion about tri-axial ellipsoids is a significant topic. First, as
many planned space-science missions will be orbiting smallbodies with non-spheroid shapes. Second, as
this is a non-trivial, non-integrable open problem inastrodynamics. This paper will serve as an
introduction to this problem and present some basic results and methods of study for this problem.

1 Introduction

Mission plansare being made which visit and orbit spacecraft about various asteroids and other
small bodies, such as comets. Due to the small size of most asteroids, their shape tends to differ
markedly from the spheroid shapes found for al the planets of the Solar system and most of their
moons. Resulting from this geometric difference, satellite dynamics about small bodies tend to be
quite different, than ‘(classical” orbiter missions. This paper introduces the tri-axial ellipsoid, a
well-known and easily specified model, as a basic mode] for a small body gravitational field. The
fundamentals of satellite dynamics about a general elipsoid are studied. These include zero
velocity surfaces, synchronous orbits, periodic orbits and analyticapproximations. Also, a
classification scheme is introduced for elipsoids, dependent 011 the stability of certain orbits about
the body.




2 Model Specification and Derivation

The tri-axial elipsoid model of asmall body is easily specified once the size, shape, density and
rotation rateof a small body is given. All these quantities may be estimated or inferred, to some
degree of accuracy, from ground-based measurements. The elipsoid model would not be used in
operation a scenarios, as spherical harmonics are preferred in that context, but is very useful in
characterizing the qualitative dynamics which satellites will encounter at asteroids or other
irregularly shaped bodies.

2.1 Physical Characteristics

If the size and shape of asiall body is determined (via brightness mnagnitudes and their variations
and/or occultations), the resulting dimensions of that body are usually given in terms of
“bread-box” dimensions, i.e. they specify the size of the bread-box which would contain the body.
The actual shape and smallscale characteristics usually cannot be determined until optical or
radar imaging of the body is obtained. Given this ambiguity, there are a wide range of possible
shapes the body may have. Suppositions range from ellipsoidal shapes to dumbbell shapes. The
tri-axial ellipsoid (or the ellipsoid) is a useful model as it has a wide range of possible shapes
generated by adjusting the shape parameters. Varying these, the body may be deformed from a
sphere to a cigar to a pancake. The élipsoid is simple to specify geometrically, all one needs are
the three major axes. Given a constant density for the asteroid and its shape and size, there are
classical formulae for the gravitational potentiad and its first and second partials. These formulae
al entail evaluating elliptic integrals, for which simple and robust numerical procedures exist.

If the bread-box size measurements of a body are a x b X ¢, wherca>b> ¢, then the
associated tri-axial ellipsoid has major semi-axes of &2 x J2 x ¢/2.leta=a/2,8 = b/2 and
v = C/2. Then the élipsoid is specified by its mgor semi-axes a X 8 X v, where a > 4> -y.

Given a constant, density p for the body, its gravitational pararmeter jis computed as:

4
Ho= -316'/104,37 (1)

where G is the gravitational constant and 51310,87 isthe volume of the ellipsoid.

Now define abody-fixed coordinate system in the dlipsoid. The 2 axis lies along the largest
dimecnsion a, the y axis lies along its intermediate dimension 8 and the 2 axis lies along its
smallest ditnension «.

This analysis assurmnes that the ellipsoid rotates uniformly about its largest moment of
inertia,thus the ellipsoid rotates uniformly about the 2 axis. The rotation rate of the ellipsoid is
denoted as w and may be inferred from ground measureinents. It is possible to generalize this
model to an ellipsoid with nutation and precession, but this is not perforined in this anaysis,

2.2 Gravitational Potential

The gravitational potential corresponding to a constant density tri-axial elipsoid is classicaly
known as a function of eliptic integrals. There are two forms of the potential, dependent on
whether the point in question is in the interior of the elipsoid or lies exterior to the ellipsoid.

If in the interior of the ellipsoid, the gravitational potential at a point z,y, z is (Reference

MacMillan):
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Note that V < O always.

The generalization of this potential to the exterior of the ellipsoid is performed using lvory’s
theorem. Sce M acM ill an for a derivation of this result. Thenthe gravitational potential of an
ellipsoid at a point , y, 2 exterior to the body is:
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where ¢ and A are defined as before. The parameter A is a function of «,y, 2 and is solved for
implicitly from Equation 6 and defines the ellipsoid passing through the point ,y, z which is
confocal to the body’s ellipsoid, Equation 6 is a cubic equation in A and has a unique positive root
A whenever

é(x, y,2; 0) > 0 M

(whena,y, 2 lies outside the ellipsoid), has the root A = O when ¢(z,y, z; O) = O (when ,y, 2 lie on
the elipsoid surface), and is not needed in the interior of the ellipsoid (when ¢(z,y, 2; O) < O).
Thus the potential defined by liquation 5 is valid for the exterior and interior of the ellipsoid as
long as A= O whenever in the interior of the elipsoid.

Itis important to note that the potentia is only twice differentiable over the entire space,
there being a discontinuity in the second partials when passing from the exterior to the interior of
the ellipsoid, or vice-versa (Reference MacMillan). This is immediately understood when noting
that the potential solves Laplace’s equation V?V = O outside the body and Poisson’s equation
V?* =4z inside the body. Despite this, trajcc.tories which pass from exterior to interior or
vic.c-versa are well defined and conserve the existing integrals of motion.

3 Equations of Motion

The equations of motion of a particle attracted by au cllipsoid can be written as:

2 = -V (8)
i = -~V )
Iél = - Vg (|0)

where the coordinates #, g, Z are referenced to au inertial frame.

Note that a transformation to the body fixed coordinates must be made to evaluate the
partials of V. To aleviate this cumbersome transformation, transform the eguations of motion into
a coordinate frame rotating at the same uniform rate, w, as the elipsoid. This results in the
equations of motion:

i—wy = war-V, (11)
J42wi = wly-V, (12)
3 o= =V, (13)
The full partia for V, is computed explicitly as:
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with similar formulae for the other first partials.
W is immediately clear that there is a Jacobiintegral for these equations:
1
?1; (@24 32 +:8) - @@ +y)+ V(e g2 = - (16)
The parameter C is a constant and is termed the “energy” of the system

4 Normalization of the Equations of Motion

‘1’0 give the discussion clarity and generalization, it isuscfulto normalize the equations of motion
via a time and length scale. Denote the scale time to be Uw and the non-dimensional time as 7:

T = wt. (27)

Choose thelargest semi-axis of the dlipsoid, «,to be the length scale and the non-dimensional
space variables to be &,y and 2 where

& = afa (18)
y = yn (19)
: = zfo. (20)
Applying the normalizations to the equations of motion yiclds:
P25 = #-V; (21)
G428 = g-V; (22)
2 = -—Vg. (23)
The potentia V is now defined as:
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The parameter A >0 is solved for from ¢(&,y, 2;A) = O whenever ¢(2,y, 2; O) >0, else A = O.

The ratio & = y1/(w?a®) parameterizes the ellipsoid and is a function of the ellipsoid shape,
size, density and rotation rate. Note that these are all quantities which may be inferred, to some
degrec of accuracy, from Earth bascd observations. The parameter 6 is, effectively, the ratio of the
gravitational acceleration to the centripelal acceleration acting on a particle at the longest end of
the ellipsoid, assuming that the elipsoid has al its mass concentrated at the origin. Should the
cllipsoid be a sphere, then it is the true gravitational acceleration to centripetal acceleration ratio
on the equator. See Appendix A for a listing of this parameter for some known asteroids. Note
that the density of asteroids and comets is a poorly known quantity in genera], thus we have
assumed some nomina values in the following analysis.

Given the shape, size and rotation rate of an ellipsoid, there isa minimumé for the body to
be physically feasible. Should the density of the body be too small, or the rotation rate be too
large, then the body may not be able to hold particles on its surface by gravitational attraction




alone. In this context, a limit on 6 may be related to a minimun density for the body to hold itself
together gravitationally. This question is discussed later in the context of synchronous orbits.

It is also possible to normalize the potential 'V so that it is analogous to a point mass. This
may be performed using MacLaurin’s Theorem (Reference MacMillan) which states that two
confocal ellipsoids may have an equivalent exterior gravitational potentialif the respective masses
associated witheach potential arc properly scaled, or that

Vi(z,y, z; 00, B1,m1) /My = Va(z,y,2; 00, B, 72) [ Mo (29)
where

a% = 0/]2 + K (30)

By =P+« (31)

Y= 4k (32)

and M1 and M, are the respective masses of the ellipsoids. This normalization is not introduced
into the analysis as it destroys the physical significance of the ellipsoid dimensions and leads to a
more diflicult evaluation of the eliptic integrals.

To state the final form of the equations, drop the hat notation, assuming al quantities to be
normalized, and define a modified force potential U:

P20 = Us (33)
y+- 2z = U, (34)
P o= U, (35)
U= a6 ) - V() (36)
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The parameter A >0 is solved for from ¢(z,y, 2; A) = O whenever ¢, y, 2; 0) >0, else A = O. Alsp,
the inequalities 1> 8>~ are assumed to hold.

5 Symmetries in the Equations of Motion

There are a number of symmetries present in thesc equations, clue to the form of the potential U.
First note the three-fold symmetry of U:
Uz, y,2) = U(de, Fy,+2). (41)

This holds as U and A are functions of 22,y?and 2’only.
Interms of the full eguations of motion, and the spat.c and time coordinates, the equations
are invariant under the transformations:

(z, y,2, 7) — (2, y,—%, T) (42)
(2, y,2,7) — (2, -y, z,~71) (43)
(IIY, Y, 2z, T) - (-£l7, Y, 2, ”T) (44)
(z, y,2, T) — (=, —y, 2, ). (45)



All these transformations may becomposed onto tack other to find additional invariant
transformations.

Another way to view these transformations is as how they act on initial conditions and time.
Motions starting from the following initial condition pairs can be transformed into each other
under the appropriate transformations given above.

(%0, Yo> 20, £0, Yoy 20, To) = (o, Yos — 2o T oy Yo %0 To) (46)
(17oayo;20)d70)yo;z.m'ro) - (170,“yo,zo,_i'o;.{/o,"Z"o,’“’To) (47)
(20, Yo 201 0, Yos 20, To) = (—20y Yoy 2oy &0, —Yo, — 20y —To) (48)
(Zoy Yos 20y Loy Yoy 20, To) — (o, —Yo, Zos — L0y — Yo, 50, To)- (19)

Thereversal of thetime sign indicates that the transformed motion goes backwards in time.

A special subset of these initial conditions are those which transforin into themselves,
leading to motion which is symmetric about a line in a plane. Should any orbit have two such
symmetries, then it is a periodic. orbit. These are discussed later.

6 Zero-Velocity Surfaces

The first topic of qualitative interest arc the zero-vcloci(y surfaces and their interpretation. Recall
the Jacobi integral (Equation 16):

T = U-C. (50)

The quantity 7' is the kinetic energy with respect to the rotating reference frame,U is the force
potential (Kquation 36) and C' is the energy constant, defined by the satellite initial conditions.
Note that, by definition, U >0. ‘]’bus, if C <0, then 7" > 0 and the satellite can never come to rest
in the rotating frame. Further, there arc no a priori bounds on where the particle may not travel.
Conversely, should C >0, then there is the possibility that 7'= O on some surface in z,y, 2
space, caled a surface of zero-velocity. These surfaces arc important as they partition the space
into regions of alowable (7' > O) and unallowable (7' < O) motion. Of specia interest are any
surfaces whit.11 guarantee that the particle is trapped in the vicinity of the ellipsoid or is bounded
away fromthe ellipsoid.
As is the usual procedure in such analyses, first consider the mro-velocity surface when
C >>0 and then discuss the changes inthese surfaces as C decreases towards O. Setting 7' = O, the
equation to solve to find the zero-velocity surfaces is:

]
-?:(:172 +y) - §V(x,y,2) = C. (51)

Sec Figure 1 for a heuristic picture of the Zero-Velocity Surfaces as projected into the a-y plane for
avariety of energies,

First recall that V(z,y, z) < 0. Then note that V (z,y, z) > V(O, O, 0), thus if
C+- 6V(0, O, O) >0, then there is only one solution to this equation, a perturbed cylinder of radius
r=\/2C 4 6V(z,y,2) <v2C. As C — co, or as 2 - o0, then » — /2C. Motion is alowable
outside of this cylinder only. As C decrcases this cylinder moves inward.

WhenC =-6V(0, O, O) another zero-velocity surface bifurcates at the center of the ellipsoid.
As C decreases further this zero-velocity surface expands and, depending on the parameters of the
ellipsoid, may eventualy intersect and then surround the ellipsoid itself, leaving space between the
zero-vcloc.ity surface and the surface of the elipsoid. At this point, motion is alowable in the space
above the surface of the ellipsoid, and such motion cannot escape from the vicinity of the ellipsoid.
As before, there is till a zero-velocity surface which separates the space near the élipsoid from the
space far from the élipsoid. Thusthere is a band surrounding the ellipsoid where motion is not
possible.




Figure 1: Zero-Veloc.ity Curves

As the energy increases further, these two surfaces will touch at two symietric points along

the x-axis. The location of these points may be computed by solving the algebraic equation:

Up(ao, 0,0)

= 0
z, # 0
A= :ITZ— 1.

These points correspond to relative equilibrium points in the dynamical system and are discussed

(52)
(53)
(54)

in Section 7. For C' decreasing from this value, particles may then travel between the space close to

the elipsoid and the space far from the ellipsoid.

As the energy decreases further, the zero-velocity surfaces projected in the 2-y plane shrink

to two symmetric points along the y axis, found by solving the algebraic equation:

Uy(o’ iyo’ 0) =

Yo
A
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o

(55)
(56)
(57)




Again, these arc equilibrium points and are discussed in the following section. For decreasing C
the zero-velocity surfaces then do not intersect the 2-y planc and only exist in the out-of-plane
space. As C — 07, the zero-velocity surfaces shrink and noveto the points # = O,y = O, z = 400,
where they disappear when C = O.

Note that these zero-velocity surfaces only have practical application when one considers
direct orbits about the elipsoid in inertia space. Retrograde orbits (in inertial space) generaly
have 7' > 0 with respect the the rotating frame. ‘1’bus, while they often prove to be quite stable,
their energy is such that there is no zero-velocity barrier between them and the ellipsoid. This
points to dcficiencies in using 1ill stability as a complete characterization of stability of motion.

7 Equilibrium Points

in studying direct orbitsaboutan €lipsoid in an inertia] frame, it is of interest tofind circular,
synchronous orbits. in the rotating reference frame, these synchronous orbits are eguilibrium
points of the equations of motion. For ellipsoids of revolution about the equator (o = 3), there are
an infinity of such points. For a genera tri-axial ellipsoid, there arc at most four such points
exterior tothe body.

Algebraically, these points arc found by finding all solutions to the equations:

Um(mo, Yo, 20) =0 (58)
Uy(a70a Yo, za) =0 (59)
U, (2o, Yo, 20) — O. (60)

It is immediately apparent that [J,= O if and only if z = O. Thus the problem may be reduced to
finding all solutions of

36 [ dv
-5 ) i hw “
36 dv _
12, e - ¢ 2
d’(mmyo;oi )\) = 0. (63)

Solutions to these equations are discussed in the following subsections.

7.1 Interior Equilibrium Point

First consider the solutionz, = y, = 0. This solution is well defined as the potential and the first
and second partials are well defined in the interior of the elipsoid. Recall again that A= O

whenever inside the elipsoid. Call this the Interior Equilibrium Point and denote its coordinates
as &; = y; = 0.

7.2 Saddle Equilibrium Points

Next consider the solution when a;, # O and y, = O. The eguation to solve in this case reduces to:
36 [ dv
1 = == _ 64
2 [ (1 + v)A(v) ©4)
Ao = 221 (65)

Note that the solution A,, and hence 2, also, may be expressed in part by elliptic functions. We do
not use this property explicitly, but instead solve Equation 64, when necessary, using the implicit



function theoremand Newton iteration. Call these the Saddle Y.quilibrium Points, for reasons
which will become obvious, and denote their coordinates by 2, and ys = O.

It is interesting to note that these equilibrium points arc not guaranteed to exist. If the
inequality

36 [ dv
— —_— 66
V< 5 arase (66)
is violated, then the saddle equilibrium points do not exist, either interior or cxterior to the
ellipsoid. Notethe following inequality and identity,

dv < _/ _dv
2 (]+v)5/2 — 2Jo (14+v)A(v)

This implies thatanccessary condition for the inequality to be violated, and for the saddle points
to not exist, isé < 1.

Should Inequality 66 be violated, then it is imagined that the dlipsoid would not, be
physicaly stable as a particle placed at the end of the ellipsoid (atz = +«) would fly off due to
centripetal acceleration. Otherwise the body must have an internal cohesive force in addition to
gravity.

This supposition may be used to derive a minimumdensity for a given ellipsoid shape, size
and rotation rate. First evaluate the minimumé for the saddle points to exist:

(67)

36, oo dv
1 = mm/ 68
2 0 (] + U)A(U) ( )
Then the minimum density is solved for as:
3
Pmin = wzm‘smin (69)

in Equation 69 the quantitics #and~ are normalized, while G and w have their original
dimensions (G = 6.672x 10 cm®/(gs?)).

7.3 Center Equilibrium Points

Next consider the solution for #,= O and y, # O. The equations to solve for this case reduce to :

36 dv
V= 3 sm 7
A0 = yo»ﬂz‘ (7])

Again, the solution for A, and y, may be expressed in part by dliptic functions. Call these
equilibrium points the Center Equilibrium Points. Their coordinates are denoted as 2, = O and
d:y.. They are important, for characterizing the asteroid withrespect to satellite motion.

Similar to the saddle points, there are cases when these equilibrium points do not exist. A
necessary condition for these points to not exist is that the saddle points not exist. We assumne in
general that these equilibrium points exist in the ellipsoids under consideration.

7.4 Other Possibilities

Finally, consider the solution for x,# O and y, # O. The equations can only be satisfied in this
case if B = 1, when there will be an infinity of possible equilibrium solutions al at a radius of

7 = +/X + 1. In this casc there is also a new integral of motion, conservat ion of angular momentum
about the rotation axis of the elipsoid. The €ellipsoid is then anoblate (or prolate) spheroid and is
not considered here.




8 Stability of the Equilibrium Points

The stability of the equilibrium points is an item of interest, as the phase space surrounding these
points may be characterized once their stability properties arc known.

Stability is inferred from a study of the solutions to the variational equations about these
points. in general, the variational equations arc stated as:

=2 = Upglow + Uryloy + Usrsloz (72)
G428 =  Uydor + Upyloy + Uyoloz (73)
E o= Unlor + Usyloy +Uszloz. (74)

The partials are al evaluated at the equilibrium points. It is simple to show that al the cross
partials are zero at the equilibrium points, yielding the simplified set:

-2y = Uselot: (75)
y+2e = Uyy'oy (76)
Po= Uyoz. (77)

Direct computation shows that U,.], < 0 for al planar points and hence al small

out-of-plane oscillations about the equilibrium points are stable. Thus we concentrate on the
in-plane stability of the points.

Formthe characteristic equation corresponding to the variational equations to find:
o+ [4 — Um:l.‘lo —_ Uyylz»] o’ '*’U:r:rlkoylo:O (78)

where ¢ is the eigenvalue of the systemn. Then the stability conditions for the equilibrium points
may be reduced to the following conditions;

Um:r'koy|o > 0 (79)
4 — Ugglo = Uylo > 0 (80)
(4 = Usalo = Uyglo)® = AUadloUyylo > 0. (81)
To compute the second partials of the function V, consider theterm Vi, explicitly:
RYY /°° du 3y Ar
Vee(2,9,2) = = Gra(T, Y, 2;0)—c— — — G (2, Y, 2; Wuzr v (82)
:r:r( ) 4 Az,y,2) :rar( )A(“) 47" A()‘)

Now the finalterim in the equation docs not disappear, as it did for V;.From the following
identities:

é(z, y,2; A) = o (83)
99, v,5 A _ (84)
oz
the general expression for A, maybe inferred:
22 1
A Y z = (85)
HA iy @y e
Similar expressions are found for A, and A,. Thesc partials simplify at the equilibriuin points.
Finally, with the simple expressions:
22
: % = 86
bola ) = o (86)
2
R B (87

al theclements needed to compute Vi, are available. The expressions for V andV;:are
computed similarly.
Now the stability of each of the equilibrium points is investigated in turn.
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8.1 Interior Equilibrium Point

As A= O for the interior point, the partials simplify to:

36 du
Umm i = —_ —_—
| : 2/; (1+ u)A(u) (88)
50

2 (P + wA()
It is important to note that, under the assumptions stated carlier, both of these quantities are
negative. If not, then the saddle and perhaps the center equilibrium points would not exist. Given
that these arc negative, it is obvious that the stability conditions 79- 81 arc all satisfied.
‘1’here is actualy something more powerful occurring in this case. Examination of the first
partialsinthe élipsoid interior and the second partials evaluated in the vicinity of the origin Snow
the following equality:

Ug(,y,2) = Uzdliz (90)

with similar results for y and z. I’bus, for motion in the interior of the elipsoid, the general
equations of motion are time invariant linear differential equations. ‘1'bus, the solutions obtained in
the vicinity of the origin are valid throughout the entire interior region of the ellipsoid.

Under the nominal assumption that Uzsli, Uyyli <0, motion in the interior of the dlipsoid is
a stable, harmonic motion. 1 is useful to briefly investigate what the stability conditions are when
the nominal assuinption is violated. First note the following inequalities:

Upeli < 1 (91)

Uph < 1 (92)
Thesc are casily established by inspection and hold for al possible parameter values. From these
inequalities it isclear that the stability conditions 80 and 81 are aways satisfied. However, should
Ussli >0 while Uyyli <0, i.e. should the saddle points not exist but the center points exist, then
al inotioninside the ellipsoid is hyperbolic. and will cventually exit the interior. Note that if both

the saddle and center points do not exist, Uszsli >0 and Uy,|; >0, thenthe interior motion is
stable and harmonic again, even though the body is not likely to exist naturaly.

8.2 Saddle Equilibrium Points

Recall that the saddle points have coordinates z, # O and y, = O. Substituting these values into
the the second partial derivatives yields:

36 [ du 30

e A (E IO REPXE® )
36 [ du
Uple = 1-2 [ %
yy! 2 A (/32 +u)A(u) (94)
Again, A; and z;are solved for from the equations:
36 [ dv
b= ?1 1+ v)A(v) (99)
Ay = i1 (96)
Simplifying the second partials yields:
36
J =
Uzels AW (97)
36 [ du
U|5:]———'/7 (98)
v B4 u) A(u)
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Given that g <1, thenUy,|; <0, as can be inferred from Equation 95. It is aso clear that
Ursls >0. Thus stability condition 79 is clearly violated while condition 81 is satisfied. The status
of condition 80 is not as clear. It can be simplified to some extent, however.

Tirst note the following identity derivedin Appendix B:

1 1/‘” ['”"]‘“"r 1 4 1 du (99)
AN T 2J, |1+4u B4 u 424 wlAW)
This may be applied to condition 80 to find the simplified condition:
I 1 1 du
1 b — _ — loo
> 2/,\‘ []+u+ 2 + ulA (u) (loo)

This expression may be reduced to some simpler sufliciency conditions. However, these would still
entail solving for the parameter &, and hence would not greatly simplify the evaluation of the
inequality, Also, this stahility condition does not change thebasic instability type of the saddle
points, which is hyperbolic, ‘1’bus, any satellite placed at or near these points will be influenced
mostly by the hyperbolic. stable and unstable manifolds, and its general motion will be to depart
fromn the vicinity of the point.

As scen in Section 6, the saddle points are the boundary points between regions of allowable
motion close to and far from the ellipsoid. ‘1'bus, motion starting close to these points will in
genera either be trapped near the €ellipsoid or trapped away from the ellipsoid. A nother way of
stating this is to note that one pair of each of the point’s stable and unstable manifolds lies close to
the dlipsoid while the other pair lies away from the élipsoid. ‘Jbus, when passing close to these
points in phase space, the fina motion of a satellite will beclose to or far from the ellipsoid
depending upon which pair of manifolds the satellite is influenced by.

8.3 Center Equilibrium Points

Recall that the center points have coordinates .= O and y. # O. Substituting these values into
the the second partial derivatives yields:

36 [ du
Upele = 1-2 [ —2 101
ol 2 Jx, (T4 uw)Au) ( )
36 [ du 36
: = —— 102
Uyale ! 2 Jx. (B2 4+ w)A(u) * A(X.) (102)
Again, A, and y. are solved for from the equations:
36 [ dv
1 = — _— 103
2 /Ac (8% + v)A(v) (103)
Ae = yi-pR (104)
Simplifying the second partials yields:
36 [ du
]ar.'nc = - 5 . NA/ N
ol = -5 [ aw (09
36
Jole = e
l yyl > A(Av) « (106)

Given that § <], then Ug,|. >0, as inferred from Equationl 03. It is also clear that
Uyylc >0. Thus stability condition 79 is clearly satisfied. The status of conditions 80 and 81 are
not as clear, and may or may not be satisfied, depending on the paramecters of the ellipsoid: 6, 3,~.
A few notes may be made concerning the order in which conditions 80 and 81 may be
violated. Assume that the parameter ¢ is fixed and that the parameters 3 and vy will be decreased
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from 8=+ = 1 (keeping v < ), thus deforining a sphere into an ellipsoid. Taking Iiquations 105
and 106 tothe limit for a sphere yields

lim Upe = 0 (107)
pyy—1
3 (108)

il

lim U
Aiy—1 yylc

Under these limits, both condition 80 and 81 are satisfied. Given this, and that condition 79 is
satisfied, it is evident that condition 81mnust be violated before condition 80 may be violated when
deforming a sphere into a general ellipsoid. Thus, as a body is progressively deformed from a
sphere, it is stability condition 81 that delineates between whether the center points are stable or
unstable. If condition 80 becomes violated subseguently, it will not have as large a qualitative
eflect as it will only pertain to the orientation of thestable and unstable manifolds of the center
points and will not affect the instability type.

For ellipsoids where al the stability conditions are satisfied, the center points are stable in
the sense that most motions started near them will oscillate about the center point indefinitely.
For ellipsoids where the stability condition is not satisfied, the center points become complex
unstable. Then, any mation started near thecenter point will eventualy spira away from the
center point. As there are no isolating zero-velocity surfaces associated with the center points, the
final motion may either fall onto the ellipsoid or escape from the ellipsoid.

Whether the center points are stable or unstable has a large influence on the stability of
near-sync.])ronous orbits about the ellipsoid. When the center points are stable, motion started in
necar synchronous orbits tend to remain bounded away from the ellipsoid, as the region of regular
curves in phase space near the center points makes passage through these curves to the surface of
the dlipsoid difficult. It is noted in passing that near-circular orbits ahout ellipsoids with stable
center points seetn to be well behaved in general.

The same cannot be said when the center points are unstable. Now the phase space around
the center points is influenced by the unstable spiral manifolds. The generic. motion under the
influence of these manifolds is to spiral away from the center point. It isimportant to note that
the spiral the satellite will follow tends to act in both the angular and radial directions. The
generic motion of a satellite along these unstable manifolds seems to either crash into the ellipsoid
or to sufler repeated close approaches to it. Due to the distorted shape of the ellipsoid, these close
approaches may cause the satellite to gain hyperbolic speeds and escape the elipsoid. If the
motion is continued through crashes with the ellipsoid the generic fina motion associated with the
unstable manifold isa dparture from the vicinity of the ellipsoid. ‘1'bus, near-synchronous orbits
about ellipsoids with unstable center points can be characterized as being unstable in generd. It is
not uncommon to observe a near-synchronous, near circular orbit crash onto an ellipsoid (with
unstable center points) within a matter of days.

in this paper ellipsoids with stable center equilibriumn points arc called Type | ellipsoids,
while those with unstable center equilibrium points are called Type 11 elipsoids. It is evident that
the crashing problem associated with Type 11 ellipsoids is related to near synchronous motion
about the ellipsoid. ‘1'bus, when orbiting about a Type 11 élipsoid, it is in general best to avoid
near synchronous orbits. An effective way of doing so is to fly in a retrograde orbit about the
ellipsoid. As will be seen later, retrograde orbits are associated with stable orbital motion.

8.4 Computing Ellipsoid Type

It is of interest to characterize when an ellipsoid is of 1ypc 1 (stable center points) and when it is
of Type 11 (unstable center points). in general, this characterization is a function of the three
parameters: 8,v,8. Given these numbers for any ellipsoid, it is possible to compute Stability
Condition 81 and check which catagory the ellipsoid falls into. This condition may be represented
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as atwo-dimensional su rface in the three-dimensional space 3,+,6. in genera, this surface may not
be defined everywhere, as there may be some combinations of/? and 4 which are never Type 11.

This procedure of computing ellipsoid type may be simplified for some cases. First note that
a sufficient, condition for an ellipsoid with parameters 8, and éto be of Type 11 is that the
corresponding elipsoid with v = 3, with é held constant, be of Type 11. This result is not
established here, but can be verified by computation. This simplifies the presentation somewhat as
the two dimensional surface in the three dimensional space is now collapsed into a one dimensiona
surface (a line) in the two dimensional space 8, 6. The ellipsoid is, in this case, an ellipsoid of
revolution. It is not, however, an oblate or prolate ellipsoid, as its axis of rotation is perpendicular
to the axis of symmetry. Ratherit is similar to a cigar lying on a table with its rotation axis
perpendicular to the table. There are simplifications to the form of the stability condition for this
case.

First note the following results for the center equilibrium point, assuming that v = g < 1.
These results may be inferred from the results given in Appendix B.

_ . 386 [ _du __
U ole =153 A T (109)
é
] 3(1~ Z(/\_c)) (110)
5
Upgle = A?/\T.) (111)
A(u) = (B2 +u)V1+ U (112

Additionally, it is now possible to reduce the dliptic integrals to quadratures in terms of known
functions. The equation from which we solve for A.isstill, however, transcendent].
The condition for stability (Equation 81) now reduces to:

366 6

subject to the constraint

36/°° du
1 = = 114
2 s (B2+u)’VIdu (114
1-p82
3_6 V14 A, _ 1 ]n]+ T+ Xc (115)
2 fl = BB+ A) 2(1 - g2 162

The curve for this condition has been generated and is shown in Figure 2. The meaning of
this curve is as follows. Giventhe three parameters for an ellipsoid, 3, and é, if the 8 and é
values fal into the Typell portion of the surface (lie beneath the curve), then the dllipsoid is a
Typell elipsoid (assuming that y <3). Note that if the values fall into the Type 1 portion of the
surface, then the ellipsoid may till be aTypell ellipsoid if 4 < . Finadly observe that the curve
dots not extend al the way to 8 =1, but stops at a value of @ =~ 0.928. For all § greater than this
value, the elipsoid with 8=+ can only be of Type 1.

Note that é is a function of g, and w2 Thusé will decrease if the mass (or density) of the
cllipsoid decreases or if the size or rotation rate increases, These effects tend to make a Type 1
ellipsoid into a Type 11 elipsoid.

9 Periodic Orbits

Now our discussion focuses on a few families of periodic orbits computed for satellite motion about
an dlipsoid. These results are all numerical and arc computed for only a few specific ellipsoid
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shapes and parameters. Five planar periodic orbits are briefly discussed,three of them associated
with the c.enter and saddle equilibrium points respectively, and the remaining two being
“near-circular”, one direct and the other retrograde with respect to inertial space. Finally a family
of threc-dimensional periodic orbits is computed and discussed.

in computing the periodic orbits, the families are either terminated once an intersection
with the ellipsoid occurs or when the continued computation of the family becomes too difficult.
The termination at an intersection with the elipsoid is not necessary, as intersecting orbits are well
defined and even conserve energy. The families are terminated due to some questions associated
with orhit families that intersect the ellipsoid. The main question pertains to the conservation of
stability properties when a family of periodic orbits’intersects the ellipsold. The question arises as
there is a discontinuity in the second partials of the potential function across the ellipsoid surface.
These partials are used in computing the variational equations and hence the stability of the orbits.

A way in which this problem may be avoided would be to rescale the ellipsoid to a smaller,
confocal ellipsoid with a larger mass, as is detailed in Mac], aurin’s Theorem (Reference MacM).
For this study, this process was not. pursued as the physical character of the ellipsoid is lost and as
the computation of the elliptic integrals becomes more time consulting as the size of the ellipsoid
is shrunk. An investigation of these questions may be of interest in future analyses.

9.1 Planar Periodic Orbits

These orbits al lie in the elipsoid equatorial plane (z = O). The near-circular direct and
retrograde orbits have two distinct symmetries, and thus have a quarter-symmetry in the plane
similar to Hill’s famous Variation orbit. (Henon).The following pairs of boundary conditions are
used to compute these orbits:

g = Xp
Yo = 0
o = 0 (116)

Yo = %o




(5] = 0

vi o0
(i?] = il'?] (1]7)
n =0

Should any orbit satisfy both of these boundary conditions, thenthat orbit maybe extended
into a periodic orbit symmetric. about boththexand y axes. Thesaddle and center periodic orbits
will only satisfy one of the above symmetry conditions. Inthe following numerical studies we
choose two basic elipsoid toinvestigate, one based on the asteroid Vests, which may be classified
as a'l'ypel asteroid, and the other based on the asteroid Eros, which may be classified asa Type
11 asteroid.

The stability computations of the periodic orbits follow well established procedures for
planar periodic orbits (11 enon). Theactual method used is described inScheeres. They involve
computation of a characteristic quantity @ which must satisfy the condition |a|] < 1 for the orbit to
be stable. A similar quantity may be computed which describes the out-of-plane stability of the
orbit.

9.1.1 Vesta

‘1’here arefive basic families of periodic orbits about a Type lellipsoid such as Vesta. These are
the direct arrd retrograde orbits which have a double symmetry property, and the periodic orbits
associated with the saddle and center equilibrium points, which have a single symmetry property.
Additionally, there are the four equilibrium points surrounding the ellipsoid.

Sce Appendix A for a list of the physical properties of the asteroid Vesta.The normalized
quantitics are used for the following computations, The saddle equilibrium points are located at:

@, = +1.94097 (118)
% = 5565129 (119)

The center equilibrium points are locatled at:

41.92377 (120)
C. = 5.531994 (121)

<
ix]
1

n

The saddle periodic. orbits are unstable, similar to the Hill problem (lenon). The center
periodic orbits arc stable in general. g’ here are two families of these orbits associated with each
center equilibrium point. Analogous to the periodic orbits assoc. iated with the triangle equilibrium
point, sin the Restricted 3-Body Problem, these two families may be distinguished as a long period
family and as a short period family. In our presentations we show only the short period family.

As expected, the family of retrograde periodic orbits are all stable. Note that the family of
direct orbits at Vests are aso stable, except for some small regions of marginal stability or small
instability. This strengthens the assertions of the previous sectionregarding Vypelellipsoids, as it
is clearly possible for a satellite to follow a stable, direct orbit at fairly low atitudes. There aso
exists a family of stable direct orbits which lie, in the most part, a a lower altitude thanthe
equilibrium points. This family has not been investigated for this presentation.

Figure 3 shows the periodic orbit families aslines in the z,, C space, where z, is the initial
coordinate along the z-axis and C isthe energy of the orbit. From these two pieces of information
the periodic orbit may be constructed, as the energy C may be translated into an initial velocity g,
which is perpendicular to the x-axis. This plot shows the direct, retrograde and saddle periodic
orbit families. The center periodic orbit family is also shown, with its initia y, coordinate plotted
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Figure 3: Periodic Orbit Families About Vesta

along the x-axis. Note that with this plotting convention, the saddle and center periodic orbit
families lie very close to one ancther.

Figure 4 shows samples of a direct, retrograde,saddle and center periodic. orbits. Note that
the direct, retrograde and center periodic orbits in this plot are stable. The saddle periodic orbit is
unstable, Also shown are two of the equilibrium points. Note that the saddle and center orbits and
points have associated mirror images located on the other side of the asteroid. These are not
shown in the figure.

9.1.2 Eros

The ellipsoid based on the asteroid Eros is aT'ype 11 élipsoid. For a Type 11 dlipsoid there arc
only threc basic families of periodic orbits. For these bodiecs the center points no longer generate
periodic. orbits in their vicinity. Thisis due to the local nature of the phase space about these
equilibrium points, as closed orbits cannot be constructed in the linear systein close to the center
points.

The parameters used for the ellipsoid based on Lros are also listed in Appendix A. Note
that, for convenience, the density was chosen so that é = 1. The norinalized quantities are used for
the following computations. Thesaddle equilibrium points are located at:

s, = 41.1926 (122)
C, = 1.6965 (123)
The center equilibrium points arc located at:
ye = 4092689 (124)
Y. = 142333 (125)

The presentation of the direct, retrograde and saddle periodic. orbit farnilies for the ellipsoid
based on Eros arc shown in Figure 5, ‘] "he definitions and interpretations of these orbits remains as
before. There are some differences for these families, however. First, as mentioncd before, there are
no periodic orbit families whichbegin at the center equilibrium points. This is due to the complex
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unstable naturc of these points, as it becomes impossible to construet a closed orbit in the
immediale region of the phase space surrounding the equilibrium point. Also note that the direct
orbits become unstable at a distance of 1.85 normalized units from the long end of the elipsoid (at
a radius of 37 km), ancl remains so for the remainder of the family, except for the small regions
where the famil y curve passes through an extremum with respect to the energy €. Again, this
highlights the danger of orbiting a Type 11 ellipsoid in a direct orbit within this distance as the
unstable manifold of these orbits tend to intersect the elipsoid, Conversely, as might be expected,
the retrograde orbits are stable throughout, the family. Thus these may be considered to be ‘{safe’
orbits in which to fly close to such an asteroid.

Not discernable from Figure 5 is that the line defining the direct family of periodic orbits
terminates as a spira in the (20, C) plane. The stability parameter « seemingly becomes
arbitrarily large as the family is continued aong this curve, athough this is stillan open matter.
Also note the relatively larger separation between the saddle family and the direct family inFigure
5. Compare this to the family given for Vests in Figure 3.

in Figure 6 are some samples of periodic orbits about the ellipsoid based on Eros. In this
plot the direct and saddle orbits are unstable while theretrograde orbit is stable.

9.2 Three-Dimensional Orbits

Next a family of out-of-plane periodic orbits is computed for the Eros based Typell élipsoid. This
faimnily is synchronous with the rotating elipsoid in that it only views one side of the ellipsoid as
the orbit is traversed. The family is generated mainly from one symmetry boundary condition,

2o = 0

Yo = Yo

zg = 0

g = &g (126)
%o = 0

o = Zp
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although one of the members of the family has two distinct symmetry boundary conditions, the
second condition being

9 — 0
Yo = Yo
20 = 20
Zyg = Lo (127)
% = 0
Zo = 0.

These symmetry boundary conditions arc found by compounding the previously stated initial
conditions given in Section 5.

For the computation of these orbits, a total of six boundary conditions must be met. In
general, three of themaremet by specifying the initia conditions. z, =0, z, =0, y, = O. The
fourth boundary condition is met by proper choice of the Poincaré map surface: z; = O. This
leaves thetwo boundary conditions 2y = O and y; = O. To achieve these boundary conditions, wc
may vary threc parameters, theinitial conditions: y,, tie, Z,Denote the genera] solution for the
Poincaré map as.

(128)

(129)

€ = 9(130,1'0,20)

o= h(mo,fbo,‘é'o)
The remaining variables y;, &1, 2; are free. *1'bus, computing the periodic orbit is equivalent to
solving the eguations:

O = g(zo, 20, 20) (130)

0 = h(z,, &o, 20) (131)
Thus it is evident that the family of these three-dimensional periodic orbits may be described asa

line in the three-dimen sional initial condition space: y,, &., 2, Note that one of these initial
variables may be replaced by the energy C.
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Sclect members of this family are presented in Figures 7-9. The threc-dimensional orbits
have been projected into the three planes: Xy, y X z,zXx . Note that only the portion of the
orbits with 2> O have been plotted. Also note that the periodic orbit with double symmetry is
denoted by the solid line in the Figures.

Final] y, in Figure 10 is a three- dimensional representation of the doubly symmetric orbit
and in IFigurell is a three-dimensional representation of the periodic orbit which intersects the
ellipsoid. in both plots the ellipsoid is drawn in the foreground. Thusthe orbits are behind the
ellipsoid, from our perspective.

The three-dimensional family is traced from intersection with the ellipsoid to an intersection
of the family with a three-dimensional orbit with a double symimetry. This double symmetry
family may be continued, although it appears that the topology of this farmily is comnplicated and
not conducive to the usual methods of continuing families of orbits.

The orbits may be associated with the center equilibrium points as they lie close to them in
the plane. Note that the double symmetry orbit intersects the y-axis in the close vicinity of the
center equilibrium point. The orbit intersects the axis at y = 0.9221 while the center equilibrium
point is at y = .9269. The energy of this double symmetric orbitisC = 0.7752, which compares
with the energy C. = 1.4233 for the center equilibrium point. Furtherinore, if the family of doubly
symmetric periodic orbits is continued, at some point they cross through the center equilibrium
point coordinates on the y-axis. The relation between the center equilibrium points and these
three-dilnensional orbits are not fully understood and will be a topic of interest for future study.

Allmembers of this family are unstable. The stability parameters of these orbits are
computed following the description in Reference M arch a). W bile the problem discussed there is
different, the basic stability conditions may be reduced to a sirnilar formulation. As mentioned, for
al the members of the family, the orbits are highly unstable.

10 Analytic Approximations for Non-Synchronous Motion

Finaly some simple approximations are discussed which may be introduced to this problemn. This
approximation assumes that the satellite orbit is not near-synchronous with the ellipsoid rotation

20




1.4
12

0.8 -
0.6 |-
04 -
02 |-.-

o
|
;
;
P~ 1 .71

02 |-~ ,

S

-04 [

-1 -0.8 -0.6-0.4-0.2 0 0.20.4 0.60.8 1
xr

Figure 7: 2 X y Projection of Periodic Orbits

rate, and then replaces the elipsoid with an equivalent oblate body. This approximation is seen to
work rather well when the satellite is in a retrograde orbit about the €lipsoid, athough there are
somne fundamental limits to the applicability of the analysis.

10.1 Derivation of a Simplified Force Potential

Restate the gravitational potential for the ellipsoid in spherical coordinates, assuming that the
potential has been expanded to the sccond order in the inertia integras:

—H 1 2 .
V = e [] T (e?+ 8% - 279 (3sin?0 — 1)
+-3 (a® = %) cos? f cos 2wt —¢) -t~ -] (132)

where O is the declination angle measured from the ellipsoid equator and ¢ is the right ascension
angle mcasured {from the z-axis.

Now introduce a particular assumption, that the satellite is not near synchronous with the
ellipsoid, or |w— ¢| >>0. This assumption is valid if the satellite is in a near circular orbit far from
the body, or if the satellite is in a retrograde orbit with respect to the ellipsoid rotation pole.
Further, in each of these cases it will be approximately true that ¢ = ¢t¢, over short intervals of
time at least. Under these assumptions it is reasonable to replace the potential in Equation 132
with the potential averaged in time over one revolution of the ellipsoid, or some other appropriate
scale time:

-
Vo= ll\] V(t)dt (133)
Perform the averaging and note that the quantity J2 may be identified as:

1
Jy = o (o2 + A% — 297) (134)

This definition of J,has dimensions of length squared, often this parameter is normalized by
dividing by the largest dimension of the ellipsoid squared. Performing the averaging and making
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thereplacements yields the result:

o

Vo= i
7 22

(3sim?0—1)+--. (135)

l
Thus the elipsoid is replaced by an equivalent oblate spheroid of the same mass, with the
primary perturbation term being the J2 term. Note that this is similar to replacing the tri-axial
cllipsoid with the ellipsoid of revolution with a = 3, while keeping the parameter § constant.
While admittedly a simple approximation, it nonetheless proves to be accurate enough in
many cases to serve as au appropriate design model for pre-mission planning for missions to small
bodies.

10.2 Secular Changes in the Orbital Elements

Given the canonical form of the potential in Equation 135, a wedlth of information exists
pertaining to satellite orbits about such a body. The results of immediate interest are the secular
rates of change of the orbital elements of a satellite orbiting the ellipsoid. Denote the usua orbital
elements as: a, the semi-major axis; e, the eccentricity; 4, the inclination; w, theargument of the
periapsis; 2, the ascending node; M, the mean anomaly.

Now borrow directly from the well-established theory of secular perturbations due to the J,
oblateness teri. Restating directly from Danby (equations 11.] 5.6), the secular rates of change are:

das 136
des _

dt (137)
o = (138)
dws nd, [6 ., .

a = - epd ! 2] (139)
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dQs 371J2

di - '—m [dey (140)
Mg (gSi“zi_ ]>] (141)
dt [ 9242 (] _ 62)3/2

where n = \/p/a3. The subscript s denotes the secular part of the clement.

These results match well with the stability results found for thedirect orbits far from the
ellipsoid and for the retrograde orbits about the ellipsoid. Further, comparisions between the above
simple formulac and numerical integrations of satellite orbits about an ellipsoid show overall
qualitative agreement, and close quantitative agrecment for retrograde orbiters at inclinations
below = —25°.

A current research effort is being made which investigates satellite motion about an ellipsoid
of revolution about its rotation axis. The results from this on-going analysis will have bearing on
this current approximation and may allow for mmore precise results.

10.3 Numerical Results for Eros and Vests

in concluding this section, representative nodal regression rates for a circular orbit at Eros and
Vesta arc presented. This is to indicate thatthe nodal regression rates that a satellite will face
when orbiting an asteroid may be quite large, making the satellite orbit significantly non-Keplerian.
Assume that the satellite is in an orbit of inclinationi = —45°, cccentricity ¢ = 0, and
semi-lngjor axis a = 2«. Note that the inclination is negative, indicating a retrograde orbit.

10.3.1 Eros Characteristic Node Regression Rate

Jr

—5 = 0.08775 (142)
po= 8.79 x 1 0°km®/s? (143)
Q. = -135 deg/day (144)
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Figure 10: Three-Dimensional, Doubly-Symmetric Periodic Orbit

10.3.2 Vesta Characteristic Node Regression Rate

J
= = 0.05116 (145)
o
o= 14.257 km?®/s? (146)
Q. = -20.8 deg/day (147)

The above regression rates have been verified with numerical integration and are correct to
the order of one degree/day. These results highlight, how even “stable” orbits about an asteroid
may still be significantly non-K eplerian and have active dynamics in quantities such as the node
and argument of the periapsis. Note that the secular change in the argument of the periapsis will
Le of the same order as the regression in the node in generd).

11 Conclusion

The research described in this paper defines the problem of satellite dynamics about a tri-axial
ellipsoid and arrives at some elementary results for this problemn. All necessary formulae needed to
compute the forces and partials for a satellite or-biting a tri-axial ellipsoid have been presented.
The problem has also been non-dimensionalized and shown to depend on only three parameters;
two shape parameters and onc parameter relating the mass, size and rotation rate of the elipsoid.

The zero-velocity surfaces of a satellite in orbit about the ellipsoid have been defined and
described. All synchronous circular orbits about the ellipsoid were found as well as the conditions
for their existence. The stahility of these synchronous circular orbits were discussed and two
classes of elipsoids were defined according to whether any of the synchronous orbits were stable or
not.Somespecific computations of periodic orbit families were presented for two representative
ellipsoids, based on actual asteroids. One of the orbit families discussed was three-dimensiona,
whilc the rest lay in the ellipsoid equator.

in the discussion, severa items of interest were raised whichmerit further study. These
items include further investigation of the periodic orbit familics, analytic representation of the
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periodic orbits emanating from the equilibrium points, and improvements to the approximate
theory of retrograde orbiters.

Figure 11: Threc-Dimensional Periodic Orbit Intersecting the Ellipsoid
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A Example Asteroids and Comets

Following is a table giving some of the known, measured physical characteristics of a few asteroids

and comets. Note that the density values arc not well known and are uncertain.

Name Type o B 0% 27 fw
(km) | (km) | (km) | (hours)
Vesta 1 265 250 220 5.3
Eros u 20 7 7 5.27
Gaspra 11 9.5 6 55 7
]da u 26 10.7 10.7 5
Tempel 2 1 8 425 | 425 8.95

B Computation of the Elliptic Integrals

T'he ellintic integrals defined by the ellipsoid potential function fallinto forms that can be directly
computed using published algorithms. First, recall the genera form of the integral:

/ Loz2+u

y2

ﬂ2+u+

22

PAu

25

(g/CC)

5__
3.21
35
3,5
1.0

~

p
@)

0.94

0.35
0.63
041
0.53

Y
()

0.83

0.35
0.58
041
0.53

&

7.06
1.00
5.75
1.36
2.07

Pmin

| (g/cc)_
0.867

0.35%4
0.576
0.404

0.508



du

(148)
Via? + u)(82 + u)(v? + )
3 [® 22 Y2 52
= 3 2 + 7 + 3 ~1
1) [e?+A+u  BZ4A4+u v+ A+4u
d
“ (149)
V@243 + (B A2+ )77 + X+ w)
The Carlson form of the elliptic. integrals used in our study aredefined as:
1 [ du
Rp(a?, /3, %) = —0/ y 150
a HERN Y Y/ e - e -
3 [ du
ko(?, #9%) = 5 [ g : (151)
26 (77 + V@2 + WE + W) +u)
Note that the function Ry is symmetric in al its arguments, but that the function Rp is
symmetric only in its first two arguments.
Using these forms, the potential may be written as:
vV = %.’172]{])(,32 + 024Nt 4 N+ %yzh’,p(y? + A2+ 2824 ))
4,%22]@(0,2 +X8+ A2+ ) - g]f,}u((lfz +X,68%+ X924 (152)
Recalling that dV/8A = O, the force partials are then:
V. = a:RD(ﬂz + /\,72 + A a2+ A) (153)
Vy = yRp(¥? + X, -t X, 8% 4+ ) (154)
V, = 2Rp(a? + A, 8% + A,9% + ) (155)

Algorithms for computing the functions Iy, and Ry arc given in Reference [6], Section 6.11.
The agorithms use a method similar to MacLaurin’s Theorem to uniformly rescale the function
arguments until they are approximately equal, a which point a Taylor series expansion may be
introduced to explicitly solve for the value of the function.

B.1 A Special ldentity

The identity stated in Equation 99 is derived here. This same identity is used elsewhere in the
paper to simplify some of the stated results.
The identity is:

1 _ l/m 1 4 1 +__] du 156
AWw) — 2), let4+u BH4u Y2+ ul Au) (156)

A(u) = (e tu)(82 + u)(y? + u) (157)

To prove this result, differentiate the quantity 1 /A(u) with respect to the parameter wu.This
results in the equality:

dA(w)™! -1 _1 1 L _1
du S ?2_},U+ﬂ2+u+fyz+ulq(u) (158)
Now integrate the quantity over the paramneter u from limits v to oo to find:
*° dA ()~ 1 i : :
7d 3 = —_— - v S
\] " 2 Ju . [012+u i A (D (159)
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Theleft hand side of the equation may be integrated exactly to yiecld:

* dA(u)™? _ | 1
v du du = Aco) — A(V) (160)
1
= AW (162)

The identity then falls directly out of the results.
This identity is most useful in reducing the stability condition devaluated at the egquilibrium
points. Interms of the Carlson form of the elliptic integrals, this identity is stated as:

a

35

V(@® +0)(B7 + v)(72 + v)

Rp(B° + v,  +v,a> + v) + Rp(7? +v,0% + v, 8% 4 v)
+1tp(a? + v, 82 4 v,9% + v) (162)

B.2 Reductions to Special Cases

Givenin the paper are several results which rely onthe evaluation of these eliptic integrals for
some simplified cases,namelya= 8,5 =v and a = 8= v.1Inall these cascs the elliptic integrals
degenerate into quadrature which may be expressed in terins of elemcentary functions. The
computation of the function Rj under al these special cases are listed below.

B.2.1 « =B=9

du

Rp(a®+Xa*42,0* +2) = _/m___ﬁ 163
n(a a4 X a4+ A) 2 )y @ AT (163)
1
Toat4 ) (164)
B.22a > /8 =¥
Rp(a®+X,82+ 2,87+ 1) = §/oo" 5 (165)
2Jo (B4+A+u)2Val+dr4u
- 3Va? 4 A 3 | 14 /SR8
T 2(a? - B2)(8% + ) - 4(a? — B2)3/2 n : = (166)
- o242
Rp(B+ M8+ X a’+ 1)) = §/°° _ du 6
2Jo (B4 A+u)(a?+ A4 u)?/2
- -3 N 3 L1t o5 ]
T (@ p)Jarg x| 2 pryEz " | Jap (168)
EESY
B23 a=8>¢
]ﬂ]}(02+)\,a2+/\’72+/\) - §/m_ du (169)
2J0 (@24 X+u)(y2+ X+ u)3/2
= 2 2 a? — 42
= (012 _ 72)m—/\ - ((1/2 _ 72)3/2 arctan 72 T (170)
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3 [ du
n( Y ) 2Jo (a4 2+u)2\/y2+ A4 u )
L VAR
BERICERED I XY
3 a? — 2
+2(?_-"YT)37§ arctan \/;;2 O (172)
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